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Introduction



Motivation

Higher-spin gauge theories are theories involving massless spin-s tields with s>2

Massless tields of spin > 1/2 are all gauge fields. The larger the spin the larger is the associated

symmetry

Rich symmetries are good in physics and mathematics (e.g. improve quantum behaviour,

quantum gravity?)



Current status

In flat space:

No-go theorems, which, for some assumptions, rule out non-trivial interactions of HS gauge
fields.

[Weinberg '64; Coleman, Mandula '67]

There exist a chiral (self-dual) higher-spin theory in 4d. Scattering in this theory is to large extent
trivial as a consequence of self-duality

[Metsaev '91: DP, Skvortsov '16]



Current status

In AdS space:

There are various construction, most notably, the Vasiliev theory.

[Vasiliev '91; Vasiliev '’2003]

Existence supported by the holographic duality with the vector models (CFT's)

[Sezgin, Sundell ‘02; Klebanov, Polyakov '02]

Ongoing debates concerning locality in these theories - theories are non-local in the

conventional sense with rather exotic amplitudes



Current status

Other setups:

Higher-spin theories in 3d can be constructed as the Chern-Simons theories

[Blencowe ‘89]

Conformal HS theories can be constructed rather explicitly

[Tseytlin '02; Segal '02]



This talk

In the present talk

Rich higher-spin symmetries alone is a powerful tool to construct HS theories. Below we will
discuss how higher-spin theories in flat space can be constructed by requiring proper
symmetries of the S-matrix. Thus, we aim to go beyond the self-dual sector (chiral theories) and

have more non-trivial scattering.



Constraints on the S-matrix from symmetries

How this usually works

Poincare global symmetry:

1) fixes 3-pt amplitudes completely
2) tixes 4-pt amplitudes up to a function of two Mandelstam variables
3) higher-point functions — more independent Mandelstam variables

Global conformal symmetry

1) fixes 3-pt correlators completely
2) tixes 4-pt correlators up to a function of two conformally invariant cross-ratios
3) higher-point functions — more independent conformally invariant cross-ratios

More symmetry — more constraints, e.g. supersymmetry, Yangian symmetry, etc — further reduce
possibilities for consistent amplitudes



Higher-spin symmetric S-matrices

Higher-spin symmetries are so rich that:

They either fix the S-matrix almost uniquely (up to an overall factor
for n-point amplitude)

Or rule out non-trivial S-matrices completely

So, non-trivial higher-spin theories appear exactly on the border-line: these are very symmetric,

but if we ask a bittoo much, interactions are ruled out completely.



Higher-spin gauge theories

These expectations are based on, in particular,

In flat space, there is a number of no-go theorems, that rule out non-trivial scattering

of HS gauge fields.
[Coleman, Mandula '67]

In the AdS space, higher-spin theories have a holographic description as simple

vector models. When higher-spin symmetry is unbroken, the CFT correlators are
fixed (almost) uniquely. Higher-spin symmetry alone fixes n-point correlators up to

an overall factor.

[Maldacena, Zhiboedov '11]

May be in flat space we ask a bit too much and if the assumptions of the no-go theorems are
slightly relaxed, we may get non-trivial higher-spin S-matrices?



This talk

Try to carry the procedure that allows us to fix the S-matrix of higher-spin gauge tields in the AdS
space over to flat space. Particular form of the AdS space procedure that we will follow:

[Colombo, Sundell '12; Didenko, Skvortsov '12; Geltond, Vasiliev '13]



Plan

1) Generalities on the S-matrix for higher-spin gauge fields
2) 4d case, sl(2,C) spinors and the spinor-helicity formalism

3) Construction of higher-spin invariant amplitudes in AdS as invariant traces of the higher-spin
algebra

4) Extension to flat space



S-matrices for higher-spin gauge fields: general
discussion



Summary of requirements

1) Spectrum. Each spin-s field comes with the global symmetry parameter. In the covariant
approach one can show that it takes values in rank-(s-1) symmetric traceless Killing tensors.

2) Jacobi identity. There should exist a Lie algebra with this spectrum. This algebra should have
Poincare subalgebra, under which all generators decompose into Killing tensors.

3) Fields = its representations. There should exist an on-shell field representation of this Lie
algebra. With respect to the Poincare subalgebra this representation should split into massless

higher-spin tields.

4) The S-matrix should be invariant under transtormations of the external lines in the on-shell

field representation

These conditions are very hard to satisty!



The AdS case

Conceptually everything remains the same — partial derivatives just need to be replaced with the
AdS background covariant derivatives



sl(2,C) spinors and the spinor-helicity
formalism



SL(2,C) spinors

Four dimensional Lorentz algebra is isomorphic to

so(3,1) ~ sl(2,C).

Accordingly Lorentz vectors can be converted to sl(2,C) bispinors and back

1

Pac = pa(aa)aéza Pa — _§(O-a)dapozéz-

Here sigma are the Pauli matrices. For light-like vectors (massless momenta) one has

ppe =0 & det(pas) =0 & Pac = —Aala-

For real positive energy momenta

We will relax this condition: lambda’s are independent, hence, momenta are complex.



Polarisation vectors

In the spinor-helicity formalism one uses a specific representation for polarisation vectors.
Helicity +1 and -1 polarisation vectors tor spin-1 field are given by

ere mu is the auxiliary ‘retference’ spinor. Changes in mu = gauge transformations.

Using these polarisation vectors and lambda’s instead of momenta in the Feynman rules, we get
something like

AfFLAL—1 [12]*
121]]23][31]°
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Massless on-shell tields

In terms of sl(2,C) spinors massless representations are realised by

. 0 0
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which act on functions ®(A, A) on C*/{0}. One can introduce the helicity operator
1, . 9,
H=-(N—-N N=)\_2_ N =)\
2 ( ) 4 ONS’ A o
lts eigenspaces
H®;,, = hdy,

are irreducible helicity h massless representations. Spin s = helicitiy +s and helicity -s. For
bosonic fields

h e, D(—\, =) = P\, \)



Practical convenience

Instead of a multiplet of fields ©**)(p)  with trace, divergence, on-shell constraints and gauge
invariance, now we have a single field ®(\, \).



Massless on-shell fields in AdS

Massless fields in AdS can be realised as

The rest remains the same except that helicity +s and helicity -s are equivalent representations.



Higher-spin invariant amplitudes in AdS

[Colombo, Sundell '12; Didenko, Skvortsov '12; Geltond, Vasiliev '13]



Higher-spin algebra
Higher-spin algebra in AdS space is defined in terms of the associative star product

(\Ifl * \Ifg)()\g, 5\3) — /d2)\1d25\1d2)\2d25\2\lfl()\1, 5\1)\112(>\2, 5\2)6i<[21]+[13]+[32])€i(<21>+<13>+<32>).

The Lie algebra commutator is just

[\Ifl,\lfg]* — \Ifl *\112 — \112 *\Ifl.

he AdS isometries so(3,2) are generated by commutators with quadratic polynomials

Pad ™~ )\Oz)\dm Jaa ™ Aa)\aa Jdéz ™ j\dj\d-

The space of Psi under so(3,2) then splits into the direct sum of traceless Killing tensors

[Fradkin, Vasiliev '87]



On-shell fields

The representation of this algebra, which carries on-shell fields is constructed as

Sg®=—-TVxP+PxU, TN =T(=\A) =T\ -N).

't can then be checked that for Psi that correspond to the so(3,2) generators, Phi, indeed,

transform as massless on-shell fields.



Invariants of the higher-spin algebra

The star product features a trace, which is cyclic for bosonic fields

Te(Ty 5 Us) = Te(Ty x Ty),  tr(T) = / PRI (A, N)62(N)F2(N) = T(0,0).

Together with associativity, this implies that

Gn Etr(\Ifl*\PQ*”'*\Pn)
s invariant under higher-spin algebra transformations

Thus one constructs invariants of the higher-spin algebra. Here, however, Psi transtform as Killing
tensors, not as fields.



Invariant scattering amplitudes

One can show that if
0e® = —Ex D+ D€

then U = ® «6%(\) transformsas d:¥ = [V, ¢],.
[Didenko, Vasiliev '09]

Accordingly,
Gy = tr(®1 % 62(N) % @z % 62(A) 5o+ x Dy % 6%(N)),

where Phi's now transform as on-shell fields is HS-invariant.

These give candidate higher-spin amplitudes, which have been checked holographically.



Invariant scattering amplitudes

Amplitude

G, = tr(Pq *52()\) * g *52()\) Kok By *52()‘))’

is superficially chiral (delta-functions on lambda but not on lambda bar).

One can show that

Gp = tr(P1 x 6°(A) x Do 67 (A) K-+ % By % 07(N)),

is invariant with respect to higher-spin symmetries as well. By adding these, we obtain a parity-
invariant amplitude



Invariant scattering amplitudes

More explicitly, for 3-point functions one finds

G5 :/d2>\1d2>\1d2A2d2A2d2>\3d2)\3<1>1(Al,>\1)<I>2(>\2,>\2)<I>3(>\3,>\3)

252N 1 Ny 4 \g)et((2D+(13)+(32))

he kernel of this integral can be regarded as an amplitude

Ay = 252N + Xy + Ng)el(@DH13)+(32))



Extension to flat space



Chiral higher-spin theory

In 4d Minkowski flat space there exists the so-called chiral higher-spin theory. It is constructed in
the light-cone gauge, by requiring Poincare invariance of the action. It has all integer helicities.

[Matsaev ‘91: DP, Skvortsov '16]

In a well-defined sense it can be regarded as the higher-spin generalisation ot self-dual Yang-
Mills theory and self-dual gravity. It is also chiral, the action is not real in the (3,1) signature.

IDP17]

Other properties carry over from self-dual theories: integrability, vanishing of tree-level n-point
amplitudes with n>3. Three-point amplitude is

gh—l

Mhl 7h27h3 —

; =90, 1) [12)Fh2=hs[p31heths=ha gy hsthi=ha =y = p) 4 hy + hg.

o be non-trivial require complex momenta (feature of massless 3-pt amplitudes)



Chiral higher-spin theory

Chiral higher-spin theories have also been studied at quantum level

[Skvortsov, Tran, Tsulaia ‘18'20]

Twistor space and free differential algebra reformulations are available

[Krasnov, Skvortsov, Tran '21; Skvortsov, Van Dongen '22;

Sharapov, Skvortsov, Sukhanov, Van Dongen '22]



Chiral theory

No-go theorems. Despite the theory has a non-linear action, the amplitudes are, in effect, trivial.
Accordingly, there is no contradiction with the no-go results (e.g. Coleman-Mandula theorem).

Parity-invariant completion. It exists, its scattering is expected to be more non-trivial (no self-
duality, hence no integrability and amplitudes are less trivial).

Direct analysis in the light-cone gauge shows that there is no local parity-invariant completion.

The same, however, applies to theories in AdS as well.

This is why we attempt here to go beyond the self-dual sector using higher-spin symmetries — at
least this works in AdS.



Chiral theory

What we will do: consider 2-pt and 3-pt functions in the chiral theory and try to identify the
associative HS product and the cyclic trace, which will enable us to construct HS invariant higher-
point amplitudes



2-point amplitudes

By two-point amplitudes in flat space we understand the Wightman functions. For scalar fields

one has

G3 = [ d'prd'pad()6(3)6 (1 + p2) 01 (1) 22 p2).
Converting this to the spinor-helicity representation, we obtain

Ay = (1) [p2]0((Lpe) (1] + (2p) [12])8((12))0([12]).
Note that it is not manifestly Lorentz covariant due to the presence of the reference spinor.

Analogously, for helicity-h two-point function one finds

p_ (_[ade2)\"
A = (=) ()3 () ) + (2 23120512




2-point amplitudes

To bring it to the form, which is reminiscent of that in AdS, we sum it over spins

O

- (1) [p2]\ "
A=Y ( wﬂ) (1) ()8 (L) [p1] + (24) [12])3((12))5([12]).

h=—o0

To perform the sum, we use the following standard regularisation

This gives

Az = & (2 1] + (L) [2]) (210 [t](Lpe) (]S ((Lpa) 1] + (200) [12])5((12))5([12]).
By going to new arguments of delta-functions, this can be written as

Ag =62 (A1 — X2)0% (A1 + Xa).




S-point amplitudes

We need to sum
gh—l

Agl,hQ,hs = (h — 1)' [12]h1—|-h2—h3 [23]h2+h3—h1 [31]h3+h1—h254()\15\1 1+ )\25\2 4 )\35\3)

over helicities on each leg. With the previous regularisation this gives
As = g[12]3e125([12] — [23])6([12] — [31]))6% (A1 A1 4+ A2 da + Aghs).
One can turther simplify this expression by changing arguments of delta functions
As = ge 252 (N + Ao+ X3)02(Aa — A3)0% (A1 — A3).

It is very reminiscent of the result that we have in AdS!



Algebraic structures

Following the AdS setup, we introduce the associative product

(B X Po)( N3, \3) = /d2A1d2A1d2A2d2A2¢1(A1, A1) Pa( A2, A2)e 262 (N + Ao — X3)0%2 (A2 — A3)0% (M1 — A3)

and trace, which is cyclic with respect to it

try (P(N, ) = /d2>\d25\<1>(>\,5\)52(5\), try (B X Pg) = try (Py x Py).

hese are chosen so that the kernels of

GQ s tI’[X((I)l X (I)Q), Gg — tI'[X((I)l X (I)Q X (I)g)

reproduce amplitudes that we have just computed



Higher-spin algebra in tlat space

Associativity of the product and cyclicity of the trace implies that A_2 and A_3 are invariant under

0. P=[P,eluy =P xe—ex d.

In this way we find that chiral higher-spin theories have some global higher-spin symmetry. This
was not built in!

Still, relevance of this algebra was seen before when reformulating the chiral higher-spin theory
as the selt-dual theory, in terms of twistors and free differential algebras

[DP "17; Krasnov, Skvortsov, Tran ‘21; Skvortsov, Van Dongen '22;
Sharapov, Skvortsov, Sukhanov, Van Dongen '22]




Higher-point amplitudes

In the same way as in AdS, one can construct higher point amplitudes

GnEtI'[X(q)l D(q)QD("‘D(q)n),

which are manitestly higher-spin invariant.



Properties

Computing explicitly we find

n

G, = /f[d%d%@i(xi,xi) ] eﬁ[ﬂ](s?(f: A) [ 02 (0 = M)
1=1 1=1 )

n>i>j>2 —2

For four-point function one gets

Ay = HUBHFEAFBADSZ N £ g + N3+ X)02 (A1 — X2)02 (A1 — A3)0% (A — \a).

't has interesting features:

Scattering occurs at all lambda equal

Barred lambda is conserved separately

This means that scattering is non-trivial only for p_i p_j =0. That is all Mandelstam variables
are vanishing

Chiral, relies on complex momenta



Properties

By making the Fourier transform

_ 1 < o _
D\, \) = ys / d*fie"" Y (\, i), YT\ i) = / d*Xe" D (N, N).
70
The original product goes into
1
(Y1572)(As, f13) = =7 / >N d? 1 d* Nod? 121 (A1, 1) Yo (A2, fin)

6%([mqu[MzusH[ustg?()\2 _ )\3)52()\1 — \3).

t behaves as the AdS star product in barred mu variable and as a trivial commutative product on

ambda variable. Quadratic polynomials

Poa ~ Aalta, Jaa ~ M bs

generate part of the Poincare algebra. The remaining J is no part of the chiral higher-spin

algebra. (Though, amplitudes still have it as a manitest symmetry)



Properties

One may try to cure chirality of amplitudes by adding
Gn EtI’N((I)l X (I)Q Xoee e X (I)n),
where

(P1 X Po)( A3, A3) = /d2A1d2A1d2A2d2A2<I>1(>\1, A1) Pa( A2, A2)e* 2 62( N 4+ Aa — A3)02 (A2 — A3)02( A1 — A3)

is parity conjugate to the original x product. Unlike in AdS space, however, amplitudes above
are not invariant with respect to the original symmetry

0. P =[P, ely =P xe—exd.

So, the naive way of curing parity by adding parity-conjugate amplitudes, unlike in AdS, breaks
the original symmetry of the theory:.



Conclusion



Conclusion

We regularised the sums over helicities in 2-pt and 3-pt amplitudes of chiral higher-spin
theories in tlat space

The resulting amplitudes quite manifestly have the form of invariant traces of a certain
associative algebra. This pattern closely mimics the one in AdS, which was confirmed
holographically.

This ensures that the chiral higher-spin theory has a certain global higher-spin algebra as a
symmetry.

Using the associative product and the respective cyclic trace extracted from 2-pt and 3-pt
functions, one can construct manitestly higher-spin invariant higher-point amplitudes

This gives us first flat space amplitudes in higher-spin gauge theories, which are non-
vanishing beyond 3-point level

Amplitudes involve distributions



Further directions

1) Restoring parity-invariance. Unlike in AdS, naive addition of parity-conjugate amplitudes

oreaks higher-spin symmetry. So, in the current form, amplitudes are chiral. This means, at
least, that these crucially rely on complex momenta
2) What is the theory (action) these amplitudes correspond to? Is it local?

3) Fix undetermined relative factors for each n-point amplitude. This may require developing
the holographic description of this theory.



Thank you!



[-xternal lines

As usual, on the external lines of the S-matrix one has the on-shell states, which are solutions to

the free equations of motion. For massless fields in flat space EOM's in the covariant form read

naaSOa(S) = 0,
o) =0,
0, 0% =0
Gauge transformations are given by
naaga(s_l) = 0,
590(1,(8) _ aaga(s—l) ga(s—l) =0,

8a€a(8_1) — 0

hese are usually solved in the Fourier space.



Constraints from gauge invariance

Solutions from the previous slide define massless representations of the Poincare algebra.
Amplitudes are Poincare invariant forms on these representations

Aal(sl),...an(sn)(pla e 7pn) — Mal(sl),...an(sn)(pla e 7Pn)5d(P1 T ‘|‘pn)
Gauge invariance leads to the familiar Ward identities in massless theories

p?Z al(Sl),...an(Sn)(p17°--7pn) — O, \V/Z

The Ward identities are, however, approach-dependent. In particular, one can use instead of phi
their gauge-fixed counterparts. Then, there will be no gauge symmetries and no Ward identities.
Global symmetries, in turn, are more universal




Global symmetries

Global symmetries in gauge theories occur as follows. One should look into the kernel of the
free gauge transtformation

5¢a(s) _ 8(15&(3_1) — 0

Parameters that solve egn above generate global symmetry transformations. In the non-linear

theory this happens as follows

5‘?%0&(3) _ aaga(s—l) 4 T(g, S0) 4

where T is linear in phi and xi and gives the first non-linear correction to the gauge
transformation law. Global symmetries are generated by

670" =T(€, ).

They still survive in a gauge-tixed theory.



Examples

The Yang-Mills theory. Gauge transtormations in the free theory are
0A%(x) = 0%(x).

So, the global symmetry parameters are x-independent. In the non-linear theory they generate

~ ~

b A% (1) = 0°¢ + [A(x), €] = [A(), ¢

which are, indeed, the global transtormations in internal space.



Examples

Gravity. Gauge transformations in the free theory are

09°"(x) = 0" (x).

Global parameters are just the Killing vectors

~

£ x) =a" + wlxy. Wa b = —Wh q-

In the non-linear theory, these generate the flat space isometries, that is the global Poincare
algebra



Higher-spin case

In the general spin case global symmetry parameters
aaga(s—l) — 0

are given by the traceless Killing tensors of the Minkowski space.

This defines the spectrum of the global higher-spin algebra.



Further consistency conditions

Global symmetry transformations should close into themselves
0z, 0g, [ = 0g, 0 = 0, £,

which defines the commutator of global symmetries. It should satisty the Jacobi identity, that is

global symmetries form a Lie algebra. If we want to have gravity as spin-2, it should have the
Poincare subalgebra

Finally,
0gp = ¢

should be a representation of this algebra. Moreover, under the Poincare subalgebra, fields
should transform in the massless higher-spin representations that we started from.




